
J .  Fluid Mech. (1976), vol. 73 ,  part 3,  pp.  445-451 

Printed in Great Britain 
445 

Relation between Nusselt number and Rayleigh 
number in turbulent thermal convection 

By ROBERT R. LONG 
Department of Earth and Planetary Sciences, The Johns Hopkins University, 

Baltimore, Maryland 21218 

(Received 2 July 1975) 

A theory is developed for the dependence of the Nusselt number on the Rayleigh 
number in turbulent thermal convection in horizontal fluid layers. The theory is 
based on a number of assumptions regarding the behaviour in the molecular 
boundary layers and on the assumption of tt buoyancy-defect law in the interior 
analogous to the velocity-defect law in flow in pipes and channels. The theory in- 
volves an unknown constant exponent s and two unknown functions of the 
Prandtl number. For either s = + or 8 = 9, corresponding to two different 
theories of thermal convection, and for a given Prandtl number, constants can 
be chosen to give excellent agreement with existing data over nearly the whole 
explored range of Rayleigh numbers in the turbulent case. Unfortunately, com- 
parisons with experiment do not permit a definite choice of s, but consistency 
with the chosen form of the buoyancy-defect law seems to suggest s = a, corre- 
sponding to  similarity theory. 

1. Derivation of Nusselt number-Rayleigh number equation 
Recent experiments (Chu & Goldstein 1973; Garon & Goldstein 1973; Threl- 

fall 1976) have yielded excellent data on the relationship between the Nusselt 
number N u  and the Rayleigh number Ra in thermal convection within horizontal 
fluid layers heated from below. These quantities are defined by 

AbH3 Ra = - 
VK ’ 

where p is the buoyancy flux, K is the coefficient of thermal conduction, v is the 
viscosity, H is the fluid depth and Ab is the buoyancy difference between the 
plates, where buoyancy is defined by 

In  (2), p is density, po is the density of the fluid at the lower plate and g is the 
acceleration due to  gravity. With the Boussinesq approximation, dimensional 
considerations require that N u  be a function of Ra and the Prandtl number 

The experimental results have been somewhat disappointing to theorists. 
A plausible argument (Howard 1966) suggests that the buoyancy flux p should 

Pr = V/K. 
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become independent of the depth as H gets large (large Ra),  so that Nu should be 
proportional to Ra* at large Ra. Instead, the data indicate a relationship 

Nu = constant x Ran, ( 3) 

where n is unmistakably less than 0.333. Estimates of n range from 0.278 to 
0.293. We shall show below that these observations are nevertheless consistent 
with the assumption that Nucc Ra4 as R -+ 00. 

In  the development below, we match expressions for 6 in the interior of the 
fluid with the expressions for 8 in the molecular layers in the manner of Izakson 
(1937) and Millikan (1937) in their studies of turbulent shearing flow. If the 
Prandtl number is small, there will be a thin viscous layer imbedded in a thick 
conductive layer. If Pr is large, the viscous layer will be thicker. When the con- 
ductive layer is as thick as or thicker than the viscous layer, we may assume that 
advection and conduction of buoyancy are of the same order, i.e. 

WE8,..K - 1, (4) 

where 8, is the thickness of the conductive layer and wi is the disturbance vertical 
velocity in the layer. In addition, we assume that the buoyancy force and the 
inertial force are of the same order in the vertical equation of motion, so that 

bi N wiz/ls,, ( 5 )  

where bi is the buoyancy fluctuation. In  view of our definition of po in (2), 5 = 0 
at the lower plate and 6 = Ab at the upper plate. If we assume cc - b:, (4), ( 5 )  and 
q N K ~ , / S ,  lead to 

8, - v%q-iPr+, (6) 

8,. = q9v-~Pr~fc(&,  Pr), (7) 

EC = zqb+Pr%, (8) 

where f,( Ec, Pr) is independent of P r  as P r  + 0. 

may assume a balance between viscous and inertial forces, i.e. 
When the viscous layer is as thick as or thicker than the conductive layer, we 

w;s,/v - 1. (9) 

We may also assume w; bi  N q and b; N A&,, where A6, is the increment in buoy- 
ancy across the viscous layer if P r  ,., 1 or the portion of the layer excluding the 
thermal boundary layer if P r  1. We assume, finally, that the buoyancy flux 
(production term) and dissipation term in the energy equation are of the same 

(10) 
order, i.e. 

q - V(w;/~tJ2. 

These lead to s, N v%q+ (11) 
bi - A6, - q a d ,  (12) 

.$ = zqiv-%. (13) 

Let us now investigate the imbedded thermal boundary layer. Here we assume 
a balance between advection and conduction again, or 

WL 8,/K N 1, 
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but we now assume that buoyancy forces and viscous forces are of the same 
order, or bl N vwE/6;. 

Using q N tc(A6)c/6c and bi N A&, where A6c is the mean buoyancy difference 
across the imbedded thermal boundary layer, we get 

AZC N qb-ifp,+.  

Since AZV is much less than the value of 6 at the top of the thermal boundary layer 
when Pr is large, we have 

= C(Pr) qb-%Prg + qb-ffv(& Pr),  (14) 

where f,( 5, Pr)  is independent of Pr as Pr -+ co and G(Pr) is a constant at large 
values of Pr. 

In  the interior, we introduce a ‘ buoyancy-defect ’ law for 6 analogous to the 
velocity-defect law for flow in the interior of a pipe or channel (Monin & Yaglom 
1971). We assume 

where U is some unspecified velocity scale and where we allow variation with 
Pr. The basic assumption in (15) is the neglect of a non-dimensional number 

( q W  

in the function x, analogous to the neglect of the Reynolds number in the velocity- 
defect law in a pipe or channel. We may also define 

LAb v% u 
7 = - m(7, Pr) = 2 - = a(?, Pr).  &-%’ Hqi’ qavf ( 1 6 ~ - c )  

Let us now match 
plate, in which 

where 

the expressions for 6 in the interior and in the layer near the 

6 = Cqb-fA + pfv-&?f( &, Pr) ,  (17) 

A+O, 6 - t  Pri, e-f Pr2 as Pr-+ 0, 

A-+Prg,  8+1, €-+I as P r + m  

and f ( & ,  Pr)  is independent of Pr at these extremes. We obtain for the region of 
overlap 

We now differentiate with respect to 6 and with respect to 7 and use the resulting 
two equations to eliminate the derivative of x. We get 

@I, Pr) [Jf(@’ Pr) + CA - m(7, Pr)l = -x(rk ,  Pr). 

a&f[ = yaV(6f i- CA)  - r(am),, (18) 

where the prime denotes partial differentiation with respect to [e and the sub- 
scripts also indicate partial derivatives. If we differentiate (18) with respect to [, 
we get 
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where s is a constant. Solutions are 

f = +Ao + B,( &)-s, cc = &-s, (20) 

where A,, B, and /3 are functions of Pr. The factor Q is introduced for later con- 
venience. Equation (18) now yields 

m = +A,&+CA-&y,~s,  (21 1 
where yo is another function of Pr. We may now use (16u) to obtain the Nusselt 
number: 

(22) 

where y is a function of Pr. The physical argument that the velocity scale should 
not increase with an increase in viscosity indicates that s 2 Q, so that the buoy- 
ancy flux becomes independent of H for large Rayleigh numbers. When Pr is large 
or small, A,  and C are independent of Pr. If, in addition, Ra is large, we get 

Nu = K ,  Ra4, Ru large Pr large, 
N u  = K ,  Ra*Prs, Ra large, Pr small, 

Ra*Pr* NU = 
[A,&+ 2CA -y(NuRu)-as]$’ 

(23) 

where K ,  and K ,  are constants. This agrees with the theory of Kraichnan (1962). 

I 

2. Comparison with experiment 
We may try to determine s, A,&+ 2CA and y from experiments. The best data, 

perhaps, are experimental measurements of heat flux in gaseous helium by 
Threlfall(l975) and in water by Garon & Goldstein (1973). We make two choices 
for s, namely s = 4 and s = Q, corresponding respectively to a recent theory of 
the author (Long 1975) and to the similarity theory of Prandtl(l932) and Priest- 
ley (1954). For helium (Pr = 0.8), we obtain 

for s = Q, 

for s = &, 

0*0524Ru* 
[l-  1.021(RaNu)-&]$ 

0*0569Ra* 
[l- 1*64(RaNu)*]* 

where we have used two fairly extreme experiments of Threlfall, with 

NU = 8, RU = lo6, 
NU = 63, R~ = 109. 

Threlfall’s experiments included measurements at much lower Rayleigh numbers, 
but transitions, or discontinuities, in the curve Nu = f (Ra)  are observed below 
Ru = lo6, and these are not revealed in the present theory. Garon & Goldstein 
believe that their data reveal abrupt changes in the slope of the curve at Rayleigh 
numbers above lo6 but this is less certain. 
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FIQURE I. Comparison of the data, of Garon & Goldstein, the theoretical curves 
for s = + and s = 1, and the power law (straight line). 

An additional comparison may be made using the data of Garon & Goldstein for 
water (Pr = 6.8). We get 

I for s =a,  0.04356Ra) 
-_  “ 1  - 1.402(RaNu)-iS-]Q 

for s = +, 0.04786 Ras 
N u  =[[l- 2 - 5 4 4 ( R a N u ) 4 ] Q  

where we have used the lowest and highest Rayleigh numbers: 

Nu = 16-2, Ra = 1.36 x lo7, 
Nu = 81.3, Ra = 3.29 x lo9. (27 )  

In  figure 1 we have drawn theoretical curves for s = and s = 1 ,  together with 
29 F L M  73 
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the data of Garon & Goldstein and a straight line representing a power law 
through the two observations in (27). The straight line is in fairly good agree- 
ment with the data and this caused Garon & Goldstein to choose a power law 
NUK RaW293. The theory for s = 3 gives better agreement than either the power 
law (which has no theoretical basis) or the theory for s = 1 (corresponding to a 
theory of Malkus 1954). We do not show the curve for s = Q because it is identical 
to the curve for s = Q when plotted on this scale. Threlfall presented a plot of his 
heat-flux measurements and there is good agreement with the present theory 
and the power law Nuoc RaoBO. Threlfall did not supply numerical data and a 
close comparison with the present theory is not possible. 

We have remarked that the theory of this paper indicates Nucc: Ra) as Ra + 00, 

but there are sensible departures at the Rayleigh numbers of the typical experi- 
ment. We can see how large the Rayleigh number must be for (26) to yield a close 
approximation to the Ru% law. For s = Q, we get Ru > 3 x 1O2l for an error of less 
than 1 yo in the Nusselt number. The corresponding value for s = Q is 

Equations (24) give even larger Rayleigh numbers. 

3. Discussion and summary 
In  a recent paper (Long 1975), I have advanced a theory of convection as an 

alternative to  the similarity theory of Prandtl (1932) and Priestley (1954). In  
the older theory, it is assumed that all variables become independent of molecular 
quantities in a region S, < z < H ,  where S, is the thickness of the thicker of the 
two boundary layers, and therefore, all variables depend only on q and z. This 
implies that scales in the interior depend only on q and H and this requires that 
s = Q in (20). My theory was motivated by certain observations in the atmo- 
spheric surface layer and in laboratory experiments which seem to differ from 
the similarity theory. With regard to the present investigation, it certainly 
appears likely that the Prandtl number, which is the ratio of the molecular 
coefficients, is an important quantity even at large Rayleigh numbers, but a 
variation of the similarity theory in which all variables in the interior depend on 
q, H and Pr only certainly is more in keeping with the buoyancy-defect law 
adopted in (15). Indeed, it seems inconsistent to neglect the quantity 7 in the 
function in (15) but allow U ,  and therefore the left-hand side of (15), to involve 
molecular quantities directly. It is disappointing that observations do not permit 
a clear-cut choice of s, but I am at present somewhat reluctantly inclined to the 
conclusion that the similarity theory may be correct after all, a t  least a t  very 
high Rayleigh numbers. 

I wish to thank Mr Larry Guffey for pointing out an error in the original type- 
script. This research was supported by the Atmospheric Science Section of the 
National Science Foundation under Grant no. GA 35612. 
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